求電子置換反応 起こりやすさ

<有機化学>求電子置換反応のおこりやすさについて、質問です。

<有機化学>求電子置換反応のおこりやすさについて、質問です。 ピリジン、ピペリジン、ピロールの3つについて、 求電子置換反応のおこりやすさの順番を教えてください。 課題にあるのですが、よくわからず困っています。 できれば、なぜそのような順番になるのかも教えていただけると嬉しいです。 よろしくお願いします。

補足

ご回答ありがとうございます。 確認させて頂きたいのですが、 ①芳香族は安定なので反応性が低い →ピペリジン>ピリジン・ピロール >ピリジン環は電子が不足しているので ②ピリジンは電子密度が低いので、求電子置換反応はおこりにくい →ピロール>ピリジン という理解で大丈夫でしょうか?

化学・3,707閲覧・xmlns="http://www.w3.org/2000/svg">50

ベストアンサー

求電子置換反応の起こりやすさは ピペリジン(真ん中の化合物) > ピロール(右の化合物) > ピリジン(左の化合物) です。 ピロールとピリジンは芳香族なので共鳴構造で表されるカチオンが生成する。さらにピリジン環は電子が不足しているので、ピリジンの求電子置換反応はたとえ進行したとしても非常に難しく、ベンゼンに対する反応速度よりも数桁遅い。

ThanksImg質問者からのお礼コメント

説明を含めたご回答ありがとうございます。 無事課題を終わらせることができました。

カテゴリQ&Aランキング

あなたも答えてみませんか

総合Q&Aランキング

Yahoo! JAPANは、回答に記載された内容の信ぴょう性、正確性を保証しておりません。
お客様自身の責任と判断で、ご利用ください。

求電子置換反応

求電子置換反応 起こりやすさ
有機化学

2021.04.15 2019.11.05

前項での説明の通り、芳香族化合物では置換反応が起こりやすいです。置換反応は大きく分けて求電子置換反応と求核置換反応がありますが、この項では求電子置換反応について扱います。

芳香族求電子置換反応の反応機構

芳香族化合物に対して求電子剤を作用させると、芳香環の水素が別の原子(原子団)に置換されます。反応機構は以下の図の通りで、まずは求電子剤が付加して、その後にプロトンが脱離します。

求電子置換反応 起こりやすさ

上記の E+ は求電子剤(electrophile)を指しています。付加の後に脱離が起きるこのような反応機構を、付加-脱離機構と呼ぶこともあります。

ハロゲン化

FeCl3 や FeBr3 などのルイス酸存在下でベンゼンにハロゲン(塩素や臭素)を反応させると、置換反応が進行します。

反応機構は先述の通りですが、ここではルイス酸が触媒として反応の進行を助けています。

求電子置換反応 起こりやすさ

ニトロ化

ベンゼンに濃硝酸+濃硫酸を作用させるとニトロベンゼンが生成します。

硝酸はニトロ基(-NO2)の供給源となり、硫酸は硝酸を反応性のあるニトロニウムイオン(NO2+)に変えるための酸性触媒となります。

求電子置換反応 起こりやすさ

スルホン化

ベンゼンに濃硫酸を作用させるとベンゼンスルホン酸が生成します。

スルホン化は、上述のハロゲン化やニトロ化と反応機構は同様ですが、可逆反応であることに注意してください。

求電子置換反応 起こりやすさ


演習問題)99回薬剤師国家試験 問7

反応性・配向性に及ぼす置換基の効果

求電子置換反応 起こりやすさ
有機化学

2020.05.26 2019.11.05

芳香族化合物の反応性

置換ベンゼンはその置換基によって求電子置換反応の反応性が上がったり下がったりします。例えば前項で簡単に触れた通り、アルキル基は求電子置換反応の反応性を強め、アシル基では逆に反応性を弱めます。

反応を促進するような置換基のことを「活性化基」といい、反応を抑制するような置換きのことを「不活性化基」といいます。

求電子試薬が反応しやすい置換ベンゼンの置換基(=活性基)とは、ベンゼン環の電子密度を増すような置換基です。逆にベンゼン環の電子密度を低下させるような置換基では、求電子試薬を引き寄せづらくなるため、その反応性は低下します。

このページの下のほうで、具体例とともにより詳しく説明します。

芳香族化合物の配向性

ベンゼンに何か1つの置換基がつくときは C6H6 のどの H と置換しても全く同じ生成物が得られますが、すでに1 つの置換基を持つ芳香族化合物の場合は、もうひとつの置換基を導入しようとすると、次の3 種の生成物が考えられることになります。

求電子置換反応 起こりやすさ

(左)o置換体 (中)m置換体 (右)p置換体

上図ではフェノールに対して1 つのニトロ基を置換しています。置換基の位置は、上図左から、o(オルト)位、m(メタ)位、p(パラ)位と呼びます。

詳しい反応機構は後述しますが、置換ベンゼンの置換基(フェノールなら -OH 基)によって次の置換基が o 位、m 位、p 位のどこに置換しやすくなるかがある程度決まります。これを配向性といいます。

ここで、o 配向性を示す置換基と p 配向性を示す置換基は同一であることから、これらをまとめて o,p 配向性と呼ぶことが一般的です。o,p 配向性を示す置換基には、-NH2、-OH、-OR、-NHCOR、-R、-Xなどがあります(R はアルキル基、X はハロゲンを指します)。

一方、m 配向性には、-NO2、-CN、-CHO、-COR、-COOH、-COOR などがあります。

以上に具体例を多く挙げましたが、無理に暗記しようとする必要はありません。次に説明する共鳴式を自分で書けるようになれば、覚えずとも導くことができます(頻出する置換基については自然に配向性を覚えていくとは思いますが)。

活性化基、o,p 配向性

上に挙げたo,p 配向性の置換基のうち、ハロゲンを除くもの(-NH2、-OH、-OR、-NHCOR、-R)は全て活性基です。

これらの置換基はベンゼンに直接結合している原子(N やO)が非共有電子対を持つため、下図のような共鳴効果によって芳香環の電子密度が高まり、反応性が上がります(活性基)。

また、置換基がアルキル基の場合は非共有電子対はありませんが、やはり電子供与基ですので、これも電子密度は高め、活性基となります。

一方、以下のような共鳴効果により、o,p 配向性を示すこともわかります。下図の負電荷がついた部分に求電子試薬がアタックすると考えてください。

求電子置換反応 起こりやすさ

不活性化基、o,p 配向性

ハロゲン原子が置換基の時も、上記の-OH や-NH2 の時と同様に共鳴構造を書けるため、o,p 配向性を示します。しかし、ハロゲン原子の電気陰性度が高いため、共鳴効果よりも強く誘起効果が効いてきて、ベンゼン環の電子密度は低くなっています。

よって、反応性は下がるため、ハロゲン基は不活性基に分類されます。

不活性化基、m 配向性

m 配向性を示すものは全て不活性基で、具体例として-NO2、-CN、-CHO、-COR、-COOH、-COORが挙げられます。

これら置換基は、ベンゼンに直接結合している原子(CやN)がさらに隣の原子(Oなど)から電子を引っ張られているため、電子不足となります。

そうするとベンゼン環のほうから電子を求引することになり、結果としてベンゼン環の電子密度が下がります。よって、これらの反応性は低下するため、不活性基となります。

また、以下のような共鳴効果によって o 位と p 位に正電荷がつく構造が書けます。求電子試薬は電子の豊富なところにアタックしやすいため、逆に正電荷のあるところだと近づきにくくなります。そうすると、正電荷のない m 位に対して反応が起こりやすくなります。

このように m 配向性とは、積極的に起こるものではなく、反応性が低い中で相対的に m 位で反応しやすいといったような消極的な配向性です。

求電子置換反応 起こりやすさ

置換ベンゼンの反応性は?

置換ベンゼンはその置換基によって求電子置換反応反応性が上がったり下がったりします。 例えば前項で簡単に触れた通り、アルキル基は求電子置換反応反応性を強め、アシル基では逆に反応性を弱めます。 反応を促進するような置換基のことを「活性化基」といい、反応を抑制するような置換きのことを「不活性化基」といいます。

アニソールの反応性は?

アニソールでは、メトキシ基の共鳴効果による電子供与によりベンゼン環の電子密度が高められており、求電子的反応に対し、オルト・パラ配向の大きな反応性を示す。 例えば、無水酢酸とアニソール反応すると、p-メトキシアセトフェノンが得られる。

ニトロニウムイオンの配向性は?

ニトロ化反応の活性種は、硝酸と硫酸の混酸系中で生成するニトロニウムイオン(NO2+)である。 配向性は、通常の芳香族求電子置換反応(SEAr)形式に従う。 ニトロ基は強い電子吸引であるため、通常のベンゼンを基質とする場合には、モノニトロ化で反応は停止する。

ピリジンの反応性は?

ピリジンは通常、芳香族求電子置換反応に対して反応性が低いが、ピリジン N-オキシドでは酸素原子の非共有電子対が芳香環に流れ込むことで反応性が高められている。 DMF とオキシ三塩化リンとの反応により生じる Vlismeier 反応剤が求電子剤として作用する。